在此

选了十二个拼音,按照 /2023/09/21/找出文本中含有特定拼音的汉字序列/ 找出目标汉字序列,输到tts生成语音文件,再编上号,还含有一个python脚本,字素到音素和音素到字素的转换字典。

/2023/09/21/批量化tts/

/2023/09/21/mandarin-tts项目好用/

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
from pathlib import Path
import tensorflow as tf
import wave
import numpy as np
from scipy.fftpack import fft
import random
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Dense,Dropout,Input,Reshape,BatchNormalization,Lambda,Activation,Conv2D,MaxPooling2D
from tensorflow.keras.models import Model
import json
import sys
from tensorflow.keras.optimizers.legacy import Adam
import os
import time
import difflib
import re

dataset_dir='C:/Users/tellw/dataset/asr'

with open(f'{dataset_dir}/p2g.json','r',encoding='utf8') as f:
p2g_json=json.load(f)

with open(f'{dataset_dir}/g2p.json','r',encoding='utf8') as f:
g2p_json=json.load(f)

pl=list(p2g_json.keys())
pl.sort()
pd={}
for i in range(len(pl)):
pd[pl[i]]=i
# ctc_batch_cost节点 计算要求按照0-num_classes-2的编号编码类别,num_classes-1是背景(?待调查),网络要输出13种类别,尽管我们这里音素只需要识别出来12种
# 2 root error(s) found.
# (0) INVALID_ARGUMENT: Saw a non-null label (index >= num_classes - 1) following a null label, batch: 0 num_classes: 13 labels: 12,6,8 labels seen so far:
# [[{{node model_1/ctc/CTCLoss}}]]
# [[model_1/ctc/CTCLoss/_84]]
# 反正是这种报错

label_max_string_length=13 # 文本最长长度
wav_max_window_length=480

class SpeechFeatureMeta():
'''
声学特征提取类的基类
'''
def __init__(self,framerate=16000):
self.framerate=framerate

def run(self,wavsignal,fs=16000):
raise NotImplementedError('run() method is not implemented')

class SpecAugment(SpeechFeatureMeta):
'''
复现谷歌SpecAugment数据增强特征算法,基于Spectrogram语谱图基础特征
'''
def __init__(self,framerate=16000,timewindow=25,timeshift=10):
self.time_window=timewindow
self.window_length=int(framerate/1000*self.time_window)
self.timeshift=timeshift
self.x=np.linspace(0,self.window_length-1,self.window_length,dtype=np.int16)
self.w=0.54-0.46*np.cos(2*np.pi*self.x/(self.window_length-1))
super().__init__(framerate)

def run(self,wavsignal,samplerate=16000):
self.framerate=samplerate
range0_end=int(len(wavsignal)/self.framerate*1000-self.time_window)//self.timeshift+1
data_input=np.zeros((range0_end,self.window_length//2),dtype=np.float32)
data_line=np.zeros((1,self.window_length),dtype=np.float32)

for i in range(0,range0_end):
p_start=i*int(self.framerate/1000*self.timeshift)
p_end=p_start+self.window_length
data_line=wavsignal[p_start:p_end]
data_line=data_line*self.w
data_line=np.abs(fft(data_line))
data_input[i]=data_line[0:self.window_length//2]
data_input=np.log(data_input+1)
mode=random.randint(1,100)
h_start=random.randint(1,data_input.shape[0])
h_width=random.randint(1,100)
v_start=random.randint(1,data_input.shape[1])
v_width=random.randint(1,100)
if mode<=60:
pass
elif 60<mode<=75:
data_input[h_start:h_start+h_width,:]=0
elif 75<mode<90:
data_input[:,v_start:v_start+v_width]=0
else:
data_input[h_start:h_start+h_width,v_start:v_start+v_width]=0
return data_input

class BaseModel:
'''
定义声学模型的接口基类
'''
def __init__(self):
self.input_shape=None
self.output_shape=None

def get_model(self):
return self.model,self.model_base

def get_train_model(self):
return self.model

def get_eval_model(self):
return self.model_base

def summary(self):
self.model.summary()

def get_model_name(self):
return self._model_name

def load_weights(self,filename):
self.model.load_weights(filename)

def save_weights(self,filename):
self.model.save_weights(filename)
self.model_base.save_weights(filename+'.base')
with open(os.path.dirname(filename)+'/epoch_'+self._model_name+'.txt','w',encoding='utf8') as f:
f.write(os.path.abspath(filename))

def get_loss_function(self):
raise Exception('method not implemented')

def forward(self,x):
raise Exception('method not implemented')

def ctc_lambda_func(args):
y_pred,labels,input_length,label_length=args
# print('===ctc_lambda_func===',y_pred,labels,input_length,label_length)
y_pred=y_pred[:,:,:]
return K.ctc_batch_cost(labels,y_pred,input_length,label_length)

class SpeechModel251BN(BaseModel):
'''
定义CNN+CTC模型,使用函数式模型

输入层:275维的特征值序列(一窗口的帧数除以2),一条语音数据的窗口序列的最大长度为480(大约4.8s),因为语音预处理时窗口的步长为10ms,窗口的长度为25ms
隐藏层:卷积池化层,卷积核大小为3x3,池化窗口大小为2
隐藏层:全连接层
输出层:全连接层,神经元数量为self.MS_OUTPUT_SIZE,使用softmax为激活函数
CTC层:使用CTC的loss作为损失函数,实现连接性时序多输出

参数:
input_shape: tuple,(窗口数量,特征值序列长度,声道数)
output_shape: tuple,(n,目标种类数量)
'''
def __init__(self,input_shape=(wav_max_window_length,275,1),output_size=13):
super().__init__()
self.input_shape=input_shape
self._pool_size=4 # 对音频谱的采样倍率(缩小倍数)
self.output_shape=(input_shape[0]//self._pool_size,output_size)
self._model_name='little_sm251bn'
self.model,self.model_base=self._define_model(self.input_shape,self.output_shape[1])

def _define_model(self,input_shape,output_size):
input_data=Input(name='the_input',shape=input_shape)
layer_h=Conv2D(32,(3,3),use_bias=True,padding='same',kernel_initializer='he_normal',name='Conv0')(input_data)
layer_h=BatchNormalization(epsilon=0.0002,name='BN0')(layer_h)
layer_h=Activation('relu',name='Act0')(layer_h)
layer_h=Conv2D(32,(3,3),use_bias=True,padding='same',kernel_initializer='he_normal',name='Conv1')(layer_h)
layer_h=BatchNormalization(epsilon=0.0002,name='BN1')(layer_h)
layer_h=Activation('relu',name='Act1')(layer_h)
layer_h=MaxPooling2D(pool_size=2,strides=None,padding='valid')(layer_h)
layer_h=Conv2D(64,(3,3),use_bias=True,padding='same',kernel_initializer='he_normal',name='Conv2')(layer_h)
layer_h=BatchNormalization(epsilon=0.0002,name='BN2')(layer_h)
layer_h=Activation('relu',name='Act2')(layer_h)
layer_h=Conv2D(64,(3,3),use_bias=True,padding='same',kernel_initializer='he_normal',name='Conv3')(layer_h)
layer_h=BatchNormalization(epsilon=0.0002,name='BN3')(layer_h)
layer_h=Activation('relu',name='Act3')(layer_h)
layer_h=MaxPooling2D(pool_size=2,strides=None,padding='valid')(layer_h)
layer_h=Reshape((self.output_shape[0],(input_shape[1]//self._pool_size)*64),name='Reshape0')(layer_h)
layer_h=Dense(64,activation='relu',use_bias=True,kernel_initializer='he_normal',name='Dense0')(layer_h)
layer_h=Dense(output_size,use_bias=True,kernel_initializer='he_normal',name='Dense1')(layer_h)
y_pred=Activation('softmax',name='Activation0')(layer_h)
import pdb;pdb.set_trace()
model_base=Model(inputs=input_data,outputs=y_pred)
labels=Input(name='the_labels',shape=[label_max_string_length],dtype='float32')
input_length=Input(name='input_length',shape=[1],dtype='int8')
label_length=Input(name='label_length',shape=[1],dtype='int8')
loss_out=Lambda(ctc_lambda_func,output_shape=(1,),name='ctc')([y_pred,labels,input_length,label_length])
model=Model(inputs=[input_data,labels,input_length,label_length],outputs=loss_out)
return model,model_base

def get_loss_function(self):
return {'ctc':lambda y_true,y_pred:y_pred}

def dataset():
with open(f'{dataset_dir}/transcripts.txt','r',encoding='utf8') as f:
wavs=f.readlines()
wav_filenames=[]
transcriptions=[]
for wav in wavs:
wav_filename,transcription=wav.strip().split()
# print(wav_filename,transcription)
wav_filenames.append(wav_filename)
transcriptions.append(transcription)
return wav_filenames,transcriptions

def process_wav(wav_filenames,transcriptions):
processed_seq=[]
transcription_seq=[]
wav_processor=SpecAugment(22050)
for wav_filename,transcription in zip(wav_filenames,transcriptions):
wav=wave.open(f'{dataset_dir}/{wav_filename}','rb')
str_data=wav.readframes(wav.getnframes())
wav.close()
wave_data=np.frombuffer(str_data,dtype=np.short)
fed_wav=wav_processor.run(wave_data,22050)
processed_seq.append(fed_wav)
transcription_seq.append([pd[pe] for pe in g2p_json[transcription].split()])
return processed_seq,transcription_seq

def ctc_label_len(label):
# https://blog.csdn.net/zkgoup/article/details/103443387 Error: loss:inf ,“No valid path found“ 与 Invalid ArgumentError:“sequence_length(0)“ (彻底解决)
add_len=0
label_len=len(label)
for i in range(label_len-1):
if label[i]==label[i+1]:
add_len+=1
return label_len+add_len

def train(iter_start=0,epoch_size=1000,batch_size=8):
ts=time.time()
wav_filenames,transcriptions=dataset()
# for transcription in transcriptions:
# print([pd[pe] for pe in g2p_json[transcription].split()])
# sys.exit()
processed_seq,transcription_seq=process_wav(wav_filenames,transcriptions)
model_m=SpeechModel251BN()
train_model=model_m.model
train_model.compile(loss=model_m.get_loss_function(),optimizer=Adam(learning_rate=0.0001,beta_1=0.9,beta_2=0.999,decay=0.0,epsilon=1e-7))
if iter_start!=0:
train_model.load_weights(f'srm-{iter_start}.h5')
# ready for data in model
input_data=np.zeros((len(processed_seq),wav_max_window_length,275,1),dtype=np.float32)
label_data=np.zeros((len(processed_seq),label_max_string_length),dtype=np.float32)
input_length=[]
label_length=[]
for k in range(len(processed_seq)):
pss=processed_seq[k].shape
input_data[k,:len(processed_seq[k])]=processed_seq[k].reshape(pss[0],pss[1],1)
label_data[k,:len(transcription_seq[k])]=transcription_seq[k]
input_length.append([len(processed_seq[k])//4+1]) # 原长度也要经过池化
label_length.append([ctc_label_len(transcription_seq[k])])
label_length=np.matrix(label_length)
input_length=np.matrix(input_length)
for j in range(epoch_size):
for i in range(0,len(processed_seq),batch_size):
leng=min(batch_size,len(processed_seq)-i)
# print([input_data,label_data,input_length,label_length])
train_model.fit([input_data[i:i+leng],label_data[i:i+leng],input_length[i:i+leng],label_length[i:i+leng]],np.zeros((leng,1)))
print(f'in {i+1}/{len(processed_seq)} batch in {j+1}/{epoch_size} epoch')
train_model.save_weights(f'srm-{iter_start+j+1}.h5')
if os.path.exists(f'srm-{iter_start+j}.h5'):
os.remove(f'srm-{iter_start+j}.h5')
train_model.save_weights(f'srm-{iter_start+epoch_size}.h5')
te=time.time()
log_str=f'train {ts} {te} {te-ts} {iter_start} {iter_start+epoch_size}'
with open('log.txt','a',encoding='utf8') as f:
f.write(log_str)

def ctc_decode_delete_tail_blank(ctc_decode_list):
p=0
while p<len(ctc_decode_list) and ctc_decode_list[p]!=-1:
p+=1
return ctc_decode_list[:p]

class ModelLanguage:
# n-gram语言模型
def __init__(self,model_path=''):
self.model_path=model_path
self.dict_pinyin=dict()
self.model1=dict()
self.model2=dict()

def load_model(self):
# 加载n-gram语言模型到内存
self.dict_pinyin=p2g_json
with open(f'{dataset_dir}/gram1.json','r',encoding='utf8') as f:
self.model1=json.load(f)
with open(f'{dataset_dir}/gram2.json','r',encoding='utf8') as f:
self.model2=json.load(f)

def pinyin2text(self,list_pinyin,beam_size=100):
# 拼音转文本,一次性取得全部结果
result=list()
tmp_result_last=list()
for item_pinyin in list_pinyin:
tmp_result=self.pinyin_stream_decode(tmp_result_last,item_pinyin,beam_size)
if len(tmp_result)==0 and len(tmp_result_last)>0:
result.append(tmp_result_last[0][0])
tmp_result=self.pinyin_stream_decode([],item_pinyin,beam_size)
if len(tmp_result)>0:
result.append(tmp_result[0][0])
tmp_result_last=tmp_result
if len(tmp_result_last)>0:
result.append(tmp_result_last[0][0])
return ''.join(result)

def pinyin_stream_decode(self,temple_result,item_pinyin,beam_size=100):
# 拼音流式解码,逐字转换,每次返回中间结果
# 如果这个拼音不再汉语拼音字典里的话,直接返回空列表,不做解码
if item_pinyin not in self.dict_pinyin:
return []
# 获取拼音下属的字的列表,cur_words包含了该拼音对应的所有的字
cur_words=self.dict_pinyin[item_pinyin]
# 第一个字做初始处理
if len(temple_result)==0:
lst_result=list()
for word in cur_words:
# 添加该字到可能的句子列表,设置初始概率为1.0
lst_result.append([word,1.0])
return lst_result
# 开始处理已经至少有一个字的中间结果情况
new_result=list()
for sequence in temple_result:
for cur_word in cur_words:
# 得到2-gram的汉字子序列
tuple2_word=sequence[0][-1]+cur_word
if tuple2_word not in self.model2:
# 如果2-gram子序列不存在
continue
# 计算状态转移概率
prob_origin=sequence[1]
count_two_word=float(self.model2[tuple2_word]) # 二字频数
count_one_word=float(self.model1[tuple2_word[-2]]) # 单字频数
cur_probility=prob_origin*count_two_word/count_one_word
new_result.append([sequence[0]+cur_word,cur_probility])
new_result=sorted(new_result,key=lambda x:x[1],reverse=True)
if len(new_result)>beam_size:
return new_result[:beam_size]
return new_result

def get_edit_distance(str1,str2):
# 计算两个串的编辑距离,支持str和list类型,如果str1和str2是列表类型的话,列表元素是要比的字符串,计算对应位置的字符串的编辑距离
leven_cost=0
for s1,s2 in zip(str1,str2):
sequence_match=difflib.SequenceMatcher(None,s1,s2)
for tag,index_1,index_2,index_j1,index_j2 in sequence_match.get_opcodes():
if tag=='replace':
leven_cost+=max(index_2-index_1,index_j2-index_j1)
elif tag=='insert':
leven_cost+=index_j2-index_j1
elif tag=='delete':
leven_cost+=index_2-index_1
return leven_cost

def calc_word_error_rate(rrs,labels):
n=0
costs=get_edit_distance(labels,rrs)
for i in range(len(labels)):
n+=len(labels[i])
return costs/n

def predict(checkpoint=75,batch_size=8):
wav_filenames,transcriptions=dataset()
processed_seq,_=process_wav(wav_filenames,transcriptions)
model_m=SpeechModel251BN()
model_m.model.load_weights(f'srm-{checkpoint}.h5')
infer_model=model_m.model_base
input_data=np.zeros((len(processed_seq),wav_max_window_length,275,1),dtype=np.float32)
lm=ModelLanguage()
lm.load_model()
for k in range(len(processed_seq)):
pss=processed_seq[k].shape
input_data[k,:len(processed_seq[k])]=processed_seq[k].reshape(pss[0],pss[1],1)
labels=[]
rrs=[]
for i in range(0,len(processed_seq),batch_size):
leng=min(batch_size,len(processed_seq)-i)
y=infer_model.predict(input_data[i:i+leng])
r=K.ctc_decode(y,np.ones((leng),dtype=np.int8)*120,greedy=True,beam_width=100,top_paths=1)
r1=r[0][0].numpy()
srs=[]
for j in range(leng):
# print('===leng===',leng)
speech_result=ctc_decode_delete_tail_blank(r1[j])
label=re.match(r'(\w*)\d\.wav',wav_filenames[i+j]).group(1)
rr=lm.pinyin2text([pl[sr] for sr in speech_result])
print(label,rr)
labels.append(label)
rrs.append(rr)
print('词错率',calc_word_error_rate(labels,rrs))


if __name__=='__main__':
train(11,1)
# predict(11)

用于训练cnn+ctc网络的代码,以及推理

2310231840